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Bubbles rising in line: why is the first
approximation so bad?

By J. F. H A R P E R
School of Mathematical and Computing Sciences,

Victoria University, Wellington, New Zealand

(Received 3 December 1996 and in revised form 24 June 1997)

An analytical theory is given for the viscous wake behind a spherical bubble rising
steadily in a pure liquid at high Reynolds number, and for that wake’s effect on
the motion of a second bubble rising underneath the first. Previous theoretical
work on this subject consists of just two papers: a first approximation ignoring
wake vorticity diffusion between the bubbles, and a full numerical solution avoiding
simplifying approximations (apart from that of spherical shape of the bubbles). A
second approximation is now found; it removes much of the discrepancy between
the first approximation and the full solution. The leading-order calculation of wake
vorticity diffusion uses a transformation of the independent variables which appears
to be new. Experimental work to date has disagreed with all the theoretical work, but
it addresses a somewhat different problem: a line of many bubbles.

1. Introduction
If a single spherical gas bubble of radius a rises steadily at speed U in a pure liquid

at a large Reynolds number R = 2Ua/ν, where ν is the kinematic viscosity of the
liquid, there is a fairly simple theory due to Moore (1963) which describes the flow
to a good approximation, with a weak viscous boundary layer around the bubble
surface merging into an irrotational flow at a distance, and with a wake behind
(and beneath) the bubble in which vorticity diffusion may be neglected except over
vertical distances much larger than the bubble radius. That vorticity diffusion has not
hitherto been calculated except for distances below the bubble much larger than aR1/2

where the usual wake similarity solution applies (Rosenhead 1964, p. 455–456). One
of the aims of this paper is to give the solution much nearer the bubble (distances of
order a). If the surface tension is large enough, one can ignore the distortions from
spherical shape that were first calculated by Moore (1965). The boundary layer can
be described as weak because the velocity everywhere is close to its irrotational value,
and velocity derivatives are different from the irrotational ones by amounts of their
own order. This contrasts with the more familiar case of boundary layers on rigid
surfaces, where velocity perturbations are of the order of the irrotational velocity,
and velocity derivatives are large.

There has long been experimental evidence (summarized by Harper 1972, herein
referred to as H72), that Moore’s model of the flow is a good one for a single
bubble if R is of order 100 or more; recent work (e.g. Duineveld 1995; Maxworthy
et al. 1996) has confirmed it. There is also evidence for Moore’s result from Navier–
Stokes numerical solutions, without physical simplifying approximations such as
inviscid regions and boundary layers, due to Brabston & Keller (1975), Ryskin &
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Leal (1984a, b), Dandy & Leal (1986), Magnaudet, Rivero & Fabre (1995), and
Blanco & Magnaudet (1995). Unfortunately the last two papers also found worrying
discrepancies with some of the earlier work, not all of which they could explain. It
seems that Navier–Stokes computation with tangentially stress-free boundaries poses
some numerical difficulties that are not yet entirely understood. Hence analytical work
on more problems of this kind seems called for. The approach in this paper is to study
a vertical line of two bubbles, as far as possible analytically, and try to avoid numerical
errors by using software (NAG 1995) only for well-understood tasks: quadrature and
evaluating special functions (erf, erfc, and Bessel In, Jn). If this approach succeeds, it
also increases physical understanding of the different mechanisms involved.

Vertical lines of rising bubbles are often seen in glasses of various drinks, e.g.
lemonade, lager, or champagne. Their lateral stability was explained by Harper
(1970b, herein referred to as H70b), for high values of R, and by Harper (1983) and
Lerner & Harper (1991) in the Stokes limit R → 0. Lateral stability is due to surface
activity, which can achieve this effect even if the amount of impurity is too small to
appreciably affect the speed of rise. (H70b showed that in the total absence of surface
activity a vertical line would be unstable, by a method that does not depend on the
Reynolds number being large, though it would not be valid in the Stokes limit.)

Vertical stability is a more difficult problem, even when surface activity is small
enough to be negligible apart from causing lateral stability, which is assumed through-
out what follows. H70b extended Moore’s (1963) theory of the flow at large R to the
case of a pair of spherical bubbles of the same size rising in quiescent liquid in the
same line, assuming that vorticity diffusion between the bubbles was negligible but
allowing for its effect in the boundary layers around the bubbles. Yuan & Prosperetti
(1994, herein referred to as YP), treated the same problem by computing the flow
using the full Navier–Stokes equations, avoiding the approximation of large R. YP
found some differences between their results and those of H70b, which seem to be
largely due to error terms in the latter paper not being negligibly small. Katz &
Meneveau (1996, herein referred to as KM) did experiments whose most striking
feature was that the second in a line of many equally spaced bubbles rose faster than
the first or third, then the fourth rose faster than the third, and the resulting close
pairs coalesced, all the way down the line. This pairing-off process is not predicted
by either YP, H70b or the present paper; they all consider only two bubbles. Harper
(1983) predicted pairing-off theoretically in the Stokes limit for three or more bubbles,
though not for two. There seems little hope of any advance on KM’s semi-empirical
theory for three or more bubbles at finite R until the wake between bubbles is studied
in much more detail than even the present work attempts.

The drag coefficients CD1, CD2 found by H70b for the top and bottom bubbles
respectively (when only two are present) are

CD1 =
48

R

(
1− 2.211 . . .

R1/2

)
− 12s4 + O(s6) + O(R−11/6) + O(R−2s−1), (1)

CD2 =
48

R

(
1− 4.345 . . .

R1/2

)
+ 12s4 + O(s6) + O(R−11/6) + O(R−2s−1), (2)

where the flow is assumed at least quasi-steady, the drag force is 1
2
πa2ρU2CD as usual,

ρ is the liquid density, assumed much larger than the gas density, R is the Reynolds
number based on the bubble diameter, and s is the ratio of bubble radius to distance
between the bubble centres, so that s = 1

2
for bubbles in contact, and physically

possible bubbles have 0 < s < 1
2
. H70b used a small-s expansion throughout, in which
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the speed vθ of the fluid at the surface of the first bubble is

vθ = 3
2
U sin θ{1− s3 + 5s4 cos θ + 1

2
s5(7 + 35 cos2 θ) + O(s6)}, (3)

where the spherical polar angle θ = 0 at the top stagnation point. Equation (3) implies
that a term ∆CD should be added to the right-hand sides of (1) and (2), where

∆CD =
48

R
{−2s3 + 14s5 + O(s6)}, (4)

because Harper (1970a) found the viscous dissipation rate E of the irrotational flow
of a uniform stream of dynamic viscosity η past a fixed surface S as

E = 2η

∫ ∫
S

1

h1

(
v2

2h3

∂h2

∂q1

+ v2
3h2

∂h3

∂q1

)
dq2dq3. (5)

In (5), (q1, q2, q3) are orthogonal coordinates, S is a surface q1 = constant, and
hi =

√
gii, where gii is a diagonal metric coefficient, i = 1, 2, 3, and the Einstein

summation convention is not used.
It is convenient to define a dimensionless bubble separation d = 1/s; note that YP

defined their d as the present d multiplied by the bubble radius. YP concentrated on
the viscous contributions to CDn for n = 1, 2. So shall I, by defining CVn to be those
terms in CDn that depend on R: all except ±12s4 + O(s6) in (1), (2) and (3). Because

CVn = 48/R + O(s3R−1) + O(R−3/2) + O(R−2s−1), (6)

YP defined drag functions Fn which tend to non-zero values as R →∞ by

Fn = R1/2

(
1− RCVn

48

)
. (7)

Equations (1) and (2) are asymptotically valid and the terms used by H70b are the
dominant ones if R � 1 and s � 1, provided that R−3/2 � R−2s−1, i.e. R−1/2d � 1.
Unfortunately for the practical utility of the theory, that last condition (which comes
from the neglect of viscous forces in the wake between the bubbles) is seldom satisfied
for real bubbles; a typical real situation might have R = 100 and d = 10, which gives
R−1/2d = 1. It is therefore no surprise that YP found that (1) and (2), and the vorticity
calculations on which they were based, were good approximations only for R so high
that the bubbles could not be nearly spherical in any possible real fluid.

Figure 1, which was redrawn from figure 4 of YP, reveals this. It plots the results of
YP and H70b for the dimensionless wake vorticity ωa/U along the abscissa, in terms
of dimensionless cylindrical polar radius m/a along the ordinate. The graphs are for
d = 8 and for three different Reynolds numbers (100, 200, 500), at three different
positions in the wake between the bubbles. These positions were given by YP as (a)
0.16 bubble radii above the top of the lower bubble, (b) halfway between the bubbles,
and (c) 0.16 radii below the bottom of the upper bubble, but Dr Yuan (personal
communication, 1996) has said that that 0.16 should have been given as 0.12.

A question that naturally arises is whether one can significantly improve on H70b
and obtain most of YP’s answer with a small fraction of their work, by allowing for
viscosity in the wake between the bubbles and finding the coefficient of R−1/2d. This
paper is an attempt to answer that question and improve physical understanding of
the whole problem. A feature of the method is a transformation of the governing
equation to a simple canonical form which appears to be new, and which simplifies the
process of finding the vorticity distribution in the wake from the vorticity distribution
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Figure 1. Vorticity distributions across the wake after YP (unmarked curves) for R = 100 (dotted),
R = 200 (dashed) and R = 500 (solid curves), and according to H70b (curves marked ×) for the
same R values, (c) are for 0.12 radii below the bottom of the upper bubble, (b) halfway between the
bubbles, and (a) 0.12 radii above the top of the lower bubble.

at its upstream end, which is the rear of the first bubble. The other methods employed
are not new, being in Rosenhead (1963), H70b, H72, and NAG (1995).

YP also dealt with some unsteady flows, but those are not discussed here. Through-
out the present work the flow will be assumed to behave as if it were steady, even
though s will change slowly for bubbles of equal size whenever CD1 6= CD2, and
so the flow pattern will change slowly. Non-sphericity of bubbles also affects their
slow relative velocity. That complication will be ignored here, although both YP
and KM suggested that it might explain the discrepancy between their theory and
experiments. As that discrepancy could be of order 10% for bubbles whose ellipticity
was far smaller than 10%, the cause must be sought elsewhere. It seems unlikely to
be surface activity, at least at the higher Reynolds numbers used by KM, because of
the closeness between their drag coefficients and the theory for pure liquids. The most
likely cause is that finding the drag coefficient of the second (or subsequent) bubble
gives its velocity relative to the fluid in which it finds itself, which is already rising
because it is in the wake of the bubble(s) above. KM gave an approximate theory of
this effect in the asymptotic wake far below a bubble and showed that the additional
velocity is of order R−1U. This is equivalent to reducing CD2 by an amount of order
R−1CD2 or O(R−2), which is negligible here because other error terms are larger. The
present treatment is used in §5 below to show that KM’s result can be extended to
the wake much nearer the first bubble than they thought, but that an infinite line of
bubbles is not a well-posed problem.

2. The first bubble: leading-order theory
It is easiest to use a frame of reference moving with the bubbles, the first bubble

being vertically above the second, and the whole configuration being axially symmet-
ric. Instability, surface activity, and deformation of the bubbles from spherical shape
will be ignored; these are good approximations in pure liquids with low values of
M = gη4/ρσ3 if the Weber number

W =
2ρU2a

σ
=

(
4MR4

3CD

)1/3

� 1, (8)
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the drag coefficient CD being defined as usual as the drag force on the bubble divided
by 1

2
ρU2πa2; see, for example, H72. Here ρ is the liquid density, assumed much larger

than the gas density, and η = ρν is the liquid dynamic viscosity, assumed much larger
than the gas dynamic viscosity. Because CD is not far from 48/R (Levich 1949, and
(1), (2), (4) above), and there are few fluids apart from liquid metals and hydrogen
with M < 10−11 and none apart from superfluid helium with M < 10−14, R can be
a few hundred at most if the approximations are to be valid. This paper deals only
with the case R � 1.

Let Ω be the dimensionless circulation density (a2/U)(ω/m), as in H72. In the
boundary layer around the first bubble let Ω = Ω1. In spherical polar coordinates
(r, θ) such that the bubble surface is r = a and the direction θ = 0 points upstream, it
is known (H70b) that if Ψ is the irrotational approximation to the stream function,
µ = cos θ, the θ-component of velocity is vθ , and terms O(s3) are neglected, then

vθ = 3
2
U sin θ +UR−1/2f1(x, z) cosec θ, (9)

x = 1
4
(2− 3µ+ µ3) = 1

4
(1− µ)2(2 + µ), (10)

z =
3R1/2(r − a) sin2 θ

8a
=
R1/2Ψ

4Ua2
, (11)

where f1 is dimensionless and determines the velocity perturbation from the irrota-
tional value, f1 = O(1) and z = O(1) in the boundary layer, and x increases from 0
to 1 as the fluid travels around the bubble. To a first approximation, Ω1 is related to
f1 by

f1(x, z) = −8

3

∫ ∞
z

Ω1(x, t) dt. (12)

Then Ω1(x, z) and f1(x, z) obey the same diffusion equation

∂2y

∂z2
= 4

∂y

∂x
, (13)

with boundary conditions

Ω1(0, z) = 0, Ω1(x, 0) = 3, (14)

f1(0, z) = 0,
∂f1

∂z
(x, 0) = 8. (15)

The solutions are immediate (Carslaw & Jaeger 1959; H70b):

Ω1(x, z) = 3 erfc(zx−1/2), f1(x, z) = −8x1/2 ierfc(zx−1/2). (16)

3. The first bubble: second-order theory
Section 2 recapitulated briefly the relevant parts of H70b, but a better approxima-

tion to the second equation in (14) and (15) is now needed. Those equations derive
from the surface boundary condition of vanishing shear stress τ. With error o(R−1/2),
τ = 0 implies that

∂f1

∂z
(x, 0) = 8 +

8R−1/2f1(x, 0)

3 sin2 θ
, (17)

and the definition of vorticity and the continuity equation then give

Ω1(x, 0) = 3 +
2R−1/2f1(x, 0)

sin2 θ
= 3 +

2u

sin θ
= 3 + ΩS1(x, 0), (18)
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say, where Uu is the perturbation of tangential velocity from its irrotational value.
Equation (18) then shows that the leading contribution to the correction term ΩS1

comes from the rear stagnation region where

ΩS1(x, 0) = −6R−1/6

m1

∫ ∞
0

∫ ∞
0

∫ ∞
0

p2qe−qrJ1(pq)J1(m1q) erfc( 3
8
p2r) dpdqdr, (19)

by H72 equation (2.39), if

m1 =
mR1/6

a
∼ R1/6 sin θ ∼ 2R1/6

(
1− x

3

)1/4

, (20)

so that m1 = O(1) in the stagnation region, where Ω2 = O(R−1/6), rather than the
much smaller Ω2 = O(R−1/2) which holds over most of the bubble’s surface.

Equation (19) is somewhat tedious for numerical evaluation, but as ΩS1 is a small
correction its asymptotic forms for small and large m1 can be used instead without
serious error. These forms are (Harper & Moore 1968; H72)

ΩS1(x, 0) ∼ −
8Γ( 5

6
)Γ( 2

3
)2

31/3π
R−1/6 = −αR−1/6 if m1 � 1, (21)

where α = 3.654 to four figures, and

ΩS1(x, 0) ∼ − 16R−1/2

π1/2(π − θ)2
∼ − βR−1/2

(1− x)1/2
∼ −16R−1/6

π1/2m2
1

if m1 � 1, (22)

where β = 4(3/π)1/2 = 3.909 to four figures. Let us approximate to Ω2(x, 0) by (21)
or (22) according as m1 < c or m1 > c, where c is chosen to make the two expressions
equal at m1 = c. Let x = x0 where m1 = c, and define γ by

γ = (1− x0)
−1/2 =

4R1/3

31/2c2
=
αR1/3

β
. (23)

The solution of (13) with boundary conditions (22) and ΩS1(0, z) = 0 is

ΩS1(x, z) ∼
αR−1/6

γ(1− x)1/2
exp

(
z2

1− x

)
erfc

(
z

x1/2[1− x]1/2

)
if x < x0. (24)

For x0 < x < 1 the boundary conditions are

ΩS1(x, 0) = −αR−1/6, (25)

ΩS1(1− γ, z) = −αR−1/6 exp (γ2z2) erfc (γzx
−1/2
0 ), (26)

from (22) and (24), and simple diffusion theory then gives ΩS1 at the bottom of the
first bubble as

ΩS1(1, z) = −αR−1/6

{
erfc (γz) +

exp (−δ2z2)− exp (−γ2z2)

π1/2γz

}
, (27)

where

δ2 = 2− 1/γ2 = 2− O(R−2/3).

As one would have expected from (25) and (26), ΩS1 = O(R−1/6) for all z > 0. It is
because R−1/6 is not really small in practice that ΩS1 needs to be considered at all;
even 500−1/6 = 0.355. Various terms of order R−1/2 have been neglected in the above
theory; this should be borne in mind when assessing how well the results agree with
YP.
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4. The wake between the bubbles
As the fluid travels past the bottom stagnation point on the first bubble, circulation

density remains constant along each streamline to a first approximation, i.e. Ω remains
the same function of Ψ that it was at the rear of the first bubble. Accordingly, let
ΩW = (a2/U)(ω/m) be the dimensionless circulation density in the wake between
the bubbles, and then the boundary condition at the upstream end is, to a first
approximation,

ΩW = 3 erfc z + ΩS1(1, z) = Ω1(1, z), (28)

where ΩS1 is given by (27).
The wake thickness is O(aR−1/4) � a if R � 1, and the boundary-layer equation

obeyed by ΩW in the wake is readily deduced from the vorticity equation as

∂ΩW

∂w
= z

∂2ΩW

∂z2
+ 2

∂ΩW

∂z
, (29)

where z = R1/2Ψ/(4Ua2) as before, w = X/(aR1/2), and X is the distance downstream
from the rear stagnation point on the first bubble, so that 0 < w < R−1/2(d−2) in the
wake. The variables w, z permit solutions of (29) to be found readily, and they work
because the velocity is close to its irrotational value throughout this wake. In spite
of its simplicity, (29) appears to be new, though it is of course a generalization, to a
non-uniform but still axially symmetric stream, of the cylindrical polar coordinates
usually used for wakes (see, for example, Rosenhead 1963, Section VIII.18). The
boundary conditions for (29) are (28) and the condition that

ΩW (w, z) remains finite as z → 0. (30)

The variables are separable in (29), and an exact solution is e−λwJ1(2[λz]1/2)z−1/2. The
other solution involving the Bessel function Y1 is discarded because it does not obey
(30). One must have λ real and positive to avoid solutions tending to infinity for large
w or z. The solution of (28), (29), (30) can be found from the Hankel transform in the
Bateman Manuscript Project (1954) and from Gradshteyn & Ryzhik (1980, equation
(6.633.2)) as

ΩW (w, z) =
2 exp(−z/w)

wz1/2

∫ ∞
0

t2Ω1(1, t
2) exp (−t2/w)I1

(
2tz1/2

w

)
dt

=
2

wz1/2

∫ ∞
0

t2Ω1(1, t
2) exp

(
− [t− z1/2]2

w

)
I1e

(
2tz1/2

w

)
dt, (31)

where the function I1e(x) = I1(x)e−|x| is the function S18CFF of the NAG (1995)
software. The integral (31) converges for all positive w and z because 0 < I1e(x) < 1
for all x > 0. It has an asymptotic but not convergent series in ascending powers of
w, and a convergent series in ascending powers of w−1. Equation (31) agrees with
the well-known far-wake solution in Rosenhead (1963, Section VIII.18), because the
leading-order approximation to CD for large d is 48/R.

Although the integral (31) has to be evaluated numerically in general, its value on
the axis of symmetry can be found analytically as

ΩW (w, 0) = 3e2(w)− αR−1/6 {e2(γw)− (δ/γ)e1(δw) + e1(γw)} , (32)

where

e1(w) =
1

2w2
erfc

1

2w
exp

1

4w2
,
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Figure 2. Curves marked ×: vorticity distributions across the wake according to (31), ignoring the
second-order term Ω2 of (27). Other details as for figure 1.
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Figure 3. Curves marked ×: vorticity distributions across the wake according to (31), including the
second-order term Ω2 of (27). Other details as for figure 1.

e2(w) = 1− 1

π1/2w
+ (1− 2w2)e1(w).

Figure 2 shows ωa/U as a function of m across the wake, calculated by numerically
integrating (31) without the second-order theory of §3 which gave the O(R−1/6)
contributions to ΩW . It compares quite well with the YP results in figure 1 except
near the first bubble (see figures 1c, 2c). Figure 3 includes the second-order theory.
Its vorticity distributions are seen to be even nearer those of YP, especially near the
first bubble, but further down the wake there is less difference between figures 2 and
3, because vorticity diffusion in the wake smears out the second-order terms more
rapidly away from the stagnation point, as those terms in (27) vary more rapidly with
z than the first-order term (16) does.

5. The drag on the second bubble
Figure 4 was redrawn from YP figure 3, and it shows that Moore’s (1963) result

F1 = 2.211 for the drag perturbation on the first bubble (7) is close to reality, except
for small d. This means that the second-order terms of §3 have little effect on the
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Figure 4. Correction factors F1, F2 after YP as a function of that paper’s centre-to-centre separation
d, giving the viscous drag for several values of the Reynolds number R. Solid lines are for the upper
bubble (F1); dashed lines are for the lower bubble (F2). 4, R = 200; 2, R = 100; ©, R = 50.

first bubble, and that the analogous terms at the second bubble’s stagnation points
should have little effect on its drag. One would expect, however, that because the
first bubble’s second-order terms do have a noticeable effect on the wake between the
bubbles, they should affect the value of the second bubble’s drag through the value of
F2. It is therefore worth investigating the boundary layer around the second bubble.

The second bubble’s boundary layer is very like the first. If r2, θ2 are spherical polar
coordinates centred on this bubble, but now µ2 = cos θ2, x2 = 1

4
(2 + µ2)(1 − µ2)

2, so

that 0 6 x2 6 1, and Ω = Ω2(x2, z), f2 = −
(

8
3

) ∫ ∞
z
Ω2(x2, z) dz, one finds that Ω2 and

f2 still obey (13), while (14) becomes

Ω2(1, z) = ΩW
(
R−1/2[d− 2], z

)
= F(z), (33)

say. Stagnation-point corrections need not be taken into account here: they affect
the drag coefficient CD2 only by terms of smaller order than those we do take into
account.

Green’s functions may now be used to find f2 and Ω2 (Carslaw & Jaeger 1959);
after integrations by parts to improve the numerical accuracy (by removing all inverse

powers of x
1/2
2 except in the arguments of error functions), the results that will be

needed later for 0 6 x2 6 1 are, if one puts ξ = x2
1/2 for brevity,

f2(x2, 0) = − 8ξ

π1/2
− 8

3

∫ ∞
0

F(t) erf
t

ξ
dt, (34)

∂f2

∂z
(x2, z) = 8 erfc

z

ξ
+ c erf

z

ξ
+

4

3

∫ ∞
0

dF(t)

dt

{
erf

z − t
ξ

+ erf
z + t

ξ

}
dt, (35)
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Figure 5. Correction factors F1, F2 found herein as a function of this paper’s centre-to-centre
separation da, giving the viscous drag for several values of the Reynolds number R. Solid lines are
for the upper bubble (F1); dashed lines are for the lower bubble (F2), according to both this work
and H70b. 4, R = 200; 2, R = 100; ©, R = 50.

where the constant c = − 8
3
F(0). The computation was checked by confirming that

∂f2/∂z → 0 for large z.

Equations (34), (35) are needed for H70b’s viscous drag correction

F2 =
3

8

∫ ∞
0

{
f2(1, z)

2 − f2(0, z)
2
}

dz +

∫ 1

−1

f2(x, 0)dµ2

+
1

16

∫ ∞
0

∫ 1

−1

(
∂f2

∂z

)2

dµ2dz + O(R−1/3)

=

∫ 1

−1

f2(x, 0)
9µ2

2 − 1

8
dµ2 +

∫ ∞
0

∫ 1

−1

(
∂f2

∂z

)2
9µ2

2 − 5

64
dµ2dz + O(R−1/3), (36)

in which all the integrations were done numerically with NAG Gaussian routines,
with 32, 64 and 128 grid points in each direction to check the convergence. Integrating
beyond z = 20 appeared to give no useful additional accuracy.

The results are shown in figure 5, which should be compared with figure 4. The
finite-s correction of (4) was small but useful; without it F1 in figure 5 would have
been constant at 2.211, but with it the curve rises slightly as d decreases past about
6, to a maximum near d = 3.4, and then falls. The rise is rather less than that of
YP, but it is there. However F2 behaves very differently in figures 4 and 5 for small
d; (4) is evidently good enough for the second bubble only if d > 4. To pursue the
present form of the theory to smaller values of d would require not only a better
approximation to ∆CD than (4), but also better approximations in various equations
in §§2, 3 and 5. They are beyond the scope of this paper.

Figure 5 confirms the result (YP) that F2 → 2.211 as d→∞ for fixed large R. The
numerical integration of (36) also confirmed the result (H70b) that F2 → 4.345 as
R →∞ for fixed large d, but as YP said, the former limiting case is of more practical
use than the latter.
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6. The speed of the second bubble
KM pointed out that as the second bubble rises in the wake of the first, its

upward velocity is increased above what would be predicted from its calculated drag
coefficient. If the downstream distance X � aR and m = O(a), the upward velocity
uX due to the first bubble is

uX = U(a/X)3 + 3UX−1 exp (−Um2/4νX) (37)

(Rosenhead 1963; KM). KM suggested approximating the effect of the second bubble
rising in this fluid by averaging uX over the projected area of that bubble, i.e. by
taking that bubble to have an additional upward velocity u given by

u =

∫ a

0

muX dm

/∫ a

0

m dm = U(a/X)3 + 24UR−1(1− e−8Ra/X), (38)

∼ U(a/X)3 + 24UR−1, (39)

when one uses (37). This result, proved by KM if X/a� R, is still true if X/a > o(1),
because the second term in (38) can be estimated from the theory of § 4 above as

uwake =
8

R1/2

∫ ∞
0

u dz where u = −4Ua2

R1/2

∫ ∞
z

Ω(w, z′) dz′, (40)

)
∂uwake

∂w
= 0, (41)

by (29). The dominant term for us is thus u = O(R−1U), which gives a smaller
contribution at large R than has already been ignored above, but because R 6 112
in the experiments of KM it cannot be ignored there. Unfortunately the bubbles
observed by KM were rising beneath many previous bubbles, not just one, and the
series

∑j=n
j=1(1 − e−8Rs/j) diverges logarithmically as the number of bubbles n → ∞.

Physically, that means that a full theory for the KM experiments would require
knowledge of n, or failing that, careful consideration of wall effects and of the effects
of the bottom of the tank and of the free surface at moderate values of R. It will not
be attempted here.

7. Conclusions
The question investigated in this paper was “Why is the first approximation (for

large R and at least moderately large d) so bad?” The answer seems to be “Because
one can ignore viscous diffusion in the wake between bubbles only if the Reynolds
number is impossibly high, and because a line of three or more bubbles differs in
important ways from a line of two.” The major discrepancy between H70b and YP
was removed in §4 which obtains the major effect of viscosity in the wake between
bubbles. Lesser but still important improvements were made in §3 by including the
R−1/6-order velocity perturbations near the rear stagnation point on the first bubble,
which affect the drag on that bubble very little but on the second bubble rather more,
and by including the finite-s correction described in §1. The other finite-s corrections
mentioned at the end of §5 would be less important, except for bubbles very close
together.
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